ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
A. V. Lvovskiy, A. L. Solomakhin
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 298-300
doi.org/10.13182/FST11-A11641
Articles are hosted by Taylor and Francis Online.
Plasma consists of two components in the Gas Dynamic Trap facility: a relatively cold and dense collisional plasma and a population of fast anisotropic ions which oscillate between mirror points. Peaks of fast ion density are made closely to the mirror points. It formes an ambipolar potential difference between these points and the center of the facility. The ambipolar potential restricts a plasma flow through the mirror region, so it influences on the plasma confinement. The ambipolar potential value can be found from the line plasma density in the central facility region. The dispersion interferometer, which is based on a CO2-laser with wavelength = 9.57 m, has been made for this purpose. The minimal line plasma density measurable with the dispersion interferometer is (nel) ~ 1013 cm-2, the time resolution is 100 s. The fast ion line density is 4 times higher than the warm ion line density in the mirror region. The ambipolar potential value is e [approximately equal] 0.7 Te in electron temperature units. Also the flute instability restriction opportunity with gradient of local electric field has been observed. The limiter voltage satisfying the condition U ~ Te is boundary for stabilization of plasma behavior.