ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
David L. Hanson, Stephen A. Slutz, Roger A. Vesey, Michael E. Cuneo
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 500-516
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1163
Articles are hosted by Taylor and Francis Online.
Fast ignition fusion targets require a uniform cryogenic D-T fuel layer for efficient fuel assembly. Uniform beta layering of solid D-T fuel within a fast ignition capsule will be complicated by the presence of a reentrant cone for short-pulse laser access. We discuss an alternative approach to cryogenic fast ignition targets currently being developed at Sandia National Laboratories in which a liquid cryogenic fuel layer is condensed from a low-pressure external gas supply and confined between concentric plastic shells. This concentric-shell cryogenic liquid fuel target concept is particularly well adapted to a hemispherical capsule configuration for single-sided X-ray drive. Liquid cryogenic D-T targets have a number of potential advantages, including greatly reduced system cost, temperature control, fill time, and cryogenic handling requirements, compared to beta-layered D-T targets. The shape and surface quality of the liquid fuel layer is determined entirely by the bounding shells, opening the possibility for simplified fast ignition fusion energy targets. Technology issues for target fabrication are discussed, and radiation-hydrodynamics simulations of liquid fuel capsule performance are presented.