ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
O. Ågren, V. E. Moiseenko, K. Noack, A. Hagnestål
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 166-169
doi.org/10.13182/FST11-A11599
Articles are hosted by Taylor and Francis Online.
A comparatively small mirror fusion hybrid device may be developed for industrial transmutation and energy production from spent nuclear waste. This opportunity ensues from the large fission to fusion energy multiplication ratio, Qr = Pfis/Pfus 150, in a subcritical fusion device surrounded by a fission mantle with the neutron multiplicity keff [approximately equal] 0.97. The geometry of mirror machines is almost perfectly suited for a hybrid reactor application, and the requirements for plasma confinement can be dramatically relaxed in correspondence with a high value of Qr. Steady state power production in a mirror hybrid seems possible if the electron temperature reaches 500 eV. A moderately low fusion Q factor, the ratio of fusion power to the power necessary to sustain the plasma, could be sufficient, i.e. Q [approximately equal] 0.15. Theoretical predictions for the straight field line mirror (SFLM) concept are presented, including results from radio frequency heating, neutron Monte Carlo and magnetic coil computations. Means to achieve an electron temperature of 500 eV are briefly discussed. The basic study considers a 25 m long confinement region with 40 cm plasma radius with 10 MW fusion power and a power production of 1.5 GW thermal.