ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NRC completes environmental review of Dresden SLR
The Nuclear Regulatory Commission has found that the environmental impacts of renewing the operating license of the Dresden nuclear power plant outside Chicago, Ill., for an additional 20 years are not great enough to prohibit doing so.
M. Borghesi, J. Fuchs, S. V. Bulanov, A. J. MacKinnon, P. K. Patel, M. Roth
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 412-439
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1159
Articles are hosted by Taylor and Francis Online.
The acceleration of high-energy ion beams (up to several tens of mega-electron-volts per nucleon) following the interaction of short (t < 1 ps) and intense (I2 > 1018 Wcm-2m-2) laser pulses with solid targets has been one of the most active areas of research in the last few years. The exceptional properties of these beams (high brightness and high spectral cutoff, high directionality and laminarity, and short burst duration) distinguish them from the lower-energy ions accelerated in earlier experiments at moderate laser intensities. In view of these properties, laser-driven ion beams can be employed in a number of groundbreaking applications in the scientific, technological, and medical areas. This paper reviews the main experimental results obtained in this area in recent years, the properties of the accelerated beams, the relevant theoretical and computational models, and the main applications that have been implemented or proposed.