ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
B. Grant Logan, Roger O. Bangerter, Debra A. Callahan, Max Tabak, Markus Roth, L. John Perkins, George Caporaso
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 399-411
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1158
Articles are hosted by Taylor and Francis Online.
Critical issues and ion beam requirements are explored for fast ignition using ion beams to provide fuel compression using indirect drive and to provide separate short-pulse ignition heating using direct drive. Several ion species with different hohlraum geometries are considered for both accelerator-produced and laser-produced ion ignition beams. Ion-driven fast ignition targets are projected to have modestly higher gains than with conventional heavy ion fusion and may offer some other advantages for target fabrication and for use of advanced fuels. However, much more analysis and additional experiments are needed before conclusions can be drawn regarding the feasibility for meeting the ion beam transverse and longitudinal emittances, focal spots, pulse lengths, and target standoff distances required for ion-driven fast ignition.