ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
Thomas C. Simonen
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 36-38
doi.org/10.13182/FST11-A11569
Articles are hosted by Taylor and Francis Online.
The achievement of 60% beta and near classical confinement in the Russian Gas Dynamic Trap (GDT) provides a basis for extrapolating to a 2 MW neutron source with 2 MW m-2 of 14 MeV neutron flux over an area of ~1 m2. Such a source is needed for fusion materials development and qualification. We consider two axisymmetric configurations: a single mirror cell Deuterium-Tritium Dynamic-Trap Neutron Source (DTNS) and a Tandem-mirror Neutron Source (TNS). Compared to earlier US neutron source concepts, neither configuration utilizes complex minimum-B magnets or thermal barriers. In this paper we describe extrapolations from GDT with the same physical size, and the same dimensionless plasma parameters, but with higher magnetic field as well as higher neutral beam energy and power.