ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
Christopher E. Hamilton, Diana Honnell, Brian M. Patterson, Derek W. Schmidt, Kimberly A. Defriend Obrey
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 194-198
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST59-194
Articles are hosted by Taylor and Francis Online.
Low-density materials containing tracer elements are an important component of target platforms for high-energy density physics experiments. High-Z elements can be dispersed homogeneously by changing chemistry of the matrix or by simple physical mixing; alternately, tracers can be introduced heterogeneously in the form of ultrathin foils or particles. We have recently focused on how best to manufacture and embed tracer elements into silica aerogels and polystyrene-divinylbenzene (CH) foams. The ability to control dopant concentration and distribution is critical to final shot success. We have produced low-density CH foams doped with chlorine at levels up to 2 at. %. In addition, we have placed metal particles and foils precisely within silica aerogel monoliths.