ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Michel Martin, Géraldine Moll, François Lallet, Alexandre Choux, Rémy Collier, Olivier Legaie, Laurent Jeannot
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 166-170
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST59-166
Articles are hosted by Taylor and Francis Online.
Smooth and uniform solid deuterium-tritium (DT) layers inside a spherical shell are needed in order to achieve ignition on the Laser Mégajoule (LMJ) facility. The thermal environment around the capsule is the key to meeting the DT layer requirements. While keeping high mode roughness within the specifications at the shot temperature is now guaranteed by a rapid cooling technique, low mode roughness ("shape" of the layer) is still a complicated and demanding subject. A perfectly uniform temperature field around the capsule is needed. Final results of the constant thermal perturbation effects on the layer can be calculated, but the dynamic of reaction is not known. This paper presents a model that allows calculation of the low mode layer behavior depending on a change in the temperature field. This comes down to calculating a target lifetime for the low modes during a thermal transient state.