ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
S. Bhandarkar, T. Parham, J. Fair
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 51-57
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST10-3718
Articles are hosted by Taylor and Francis Online.
For the various tuning as well as ignition campaigns, targets on the National Ignition Facility (NIF) need to be filled with gases, typically with the different isotopes of H2 and He. Fill tubes that supply the two small chambers in the target, the capsule and the hohlraum, are microcapillaries that are only tens of microns in diameter and present significant impedance to flow. Knowledge of the exact pressures and gas compositions in the capsule and the hohlraum is critical for fielding targets on NIF. This requires modeling of the gas flow through the capillary tubes, at both room temperature and cryogenic temperatures. We present results from a comprehensive model and its experimental verification for a range of conditions such as temperature and pressure.