ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
S. Bhandarkar, T. Parham, J. Fair
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 51-57
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST10-3718
Articles are hosted by Taylor and Francis Online.
For the various tuning as well as ignition campaigns, targets on the National Ignition Facility (NIF) need to be filled with gases, typically with the different isotopes of H2 and He. Fill tubes that supply the two small chambers in the target, the capsule and the hohlraum, are microcapillaries that are only tens of microns in diameter and present significant impedance to flow. Knowledge of the exact pressures and gas compositions in the capsule and the hohlraum is critical for fielding targets on NIF. This requires modeling of the gas flow through the capillary tubes, at both room temperature and cryogenic temperatures. We present results from a comprehensive model and its experimental verification for a range of conditions such as temperature and pressure.