ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. Ongena, A. M. Messiaen
Fusion Science and Technology | Volume 49 | Number 2 | February 2006 | Pages 425-440
Technical Paper | Plasma and Fusion Energy Physics - Fusion Reactor Issues | doi.org/10.13182/FST06-A1142
Articles are hosted by Taylor and Francis Online.
The total amount of heating power coupled to the plasma Ptot and the energy confinement time are determining parameters for realizing the plasma conditions suitable for the reactor. We recall that the ignition condition can be expressed by the following condition on the triple fusion product :NT = Ptot2/3 Vol = 3N2T2Vol/Ptot > (NT)ignition (1)with T ~= 15keVwhere = E/Ptot is the energy confinement time, E = 3NT Vol for an isothermal plasma with Ti = Te = T and a plasma volume Vol; N is the plasma density. The value T ~= 15 keV corresponds to the minimum value of (NT)ignition as a function T (see Fig. 1). In the present discussion for the sake of simplicity, we neglect density and temperature profile factors. The heating power in most of the present experiments is given by Ptot = POH + Padd where POH is the ohmic power and Padd is the additional heating due to neutral beam injection or R.F. heating. At ignition, the additional heating power must come completely from the energetic particles produced by the fusion reactions and we must have Ptot = P if we neglect the residual POH and the plasma losses by Bremsstrahlung (PBr [is proportional to] N2T1/2).