ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
U. Samm
Fusion Science and Technology | Volume 49 | Number 2 | February 2006 | Pages 234-239
Technical Paper | Plasma and Fusion Energy Physics - Edge Physics and Exhaust | doi.org/10.13182/FST06-A1122
Articles are hosted by Taylor and Francis Online.
The control of wall loads in fusion devices, in particular with respect to the life time limitations of wall components due to material erosion and migration, will be decisive for the realisation of a fusion power plant operating in steady state. In ITER the primary goal for plasma-wall interaction is the achievement of a high availability of this pulsed experiment. The article describes the grand challenges of plasma-wall interaction research along the needs for ITER and the strategies of ongoing research for further optimization of the design. Addressed are questions related to material problems, erosion- and transport processes, tritium retention in deposited layers and problems transient heat loads.