ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
K. Shinohara, M. Sato, H. Kawashima, K. Tsuzuki, S. Suzuki, K. Urata, N. Isei, T. Tani, K. Kikuchi, T. Shibata, H. Kimura, Y. Miura, Y. Kusama, M. Yamamoto, JFT-2M Group
Fusion Science and Technology | Volume 49 | Number 2 | February 2006 | Pages 187-196
Technical Paper | JFT-2M Tokamak | doi.org/10.13182/FST06-A1094
Articles are hosted by Taylor and Francis Online.
In JFT-2M, the toroidal magnetic field (TF) ripple was reduced by ferritic insert. Two kinds of ripple reduction were carried out. In the first case, ferritic steel was installed between the TF coil (TFC) and the vacuum vessel, just under the TFCs outside the vacuum vessel. In the second one, ferritic steel was installed inside the vacuum vessel covering almost the whole inside wall. The ripple was successfully reduced in both cases. The temperature increment on the first wall, which indicates the ripple-induced loss of fast ions, was measured by infrared television and was also reduced. The effect of the localized larger ripple was also investigated by attaching additional ferritic steel. A new version of the orbit-following Monte Carlo (OFMC) code was developed including the three-dimensional complex structure of the TF ripple and the nonaxisymmetric first-wall geometry. The experimental results and the new OFMC calculation were consistent.