ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
K. Ida, Y. Miura, T. Ido, Y. Nagashima, K. Shinohara
Fusion Science and Technology | Volume 49 | Number 2 | February 2006 | Pages 122-138
Technical Paper | JFT-2M Tokamak | doi.org/10.13182/FST06-A1091
Articles are hosted by Taylor and Francis Online.
The mechanism of E × B flow formation, the effect of the E × B flow on parallel flow, the reduction of fluctuations by the shearing effect of the E × B flow shear, and the relation between the geodesic acoustic mode (GAM) and density fluctuations are discussed based on the experiments using various Er measurements in the JFT-2M tokamak. The experiments in plasmas with H-mode and counter-neutral beam injection (NBI) mode show that the feedback loop of the E × B flow shear, the fluctuation suppression, and an increase of ion diamagnetic flow are key to the formation of the transport barrier in toroidal plasmas. Two important effects of the radial electric field are presented: One is fluctuation suppression by the E × B flow shear, and the other is a drive of the parallel flow by radial electric field, which explains the driving mechanism of a spontaneous toroidal flow. The relation between the GAM and the density fluctuations is also discussed. The GAM is observed to be excited by the nonlinear coupling of density fluctuations, while the GAM itself affects the amplitude of the density fluctuations.