ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Andrea Murari, Guido Vagliasindi, Eleonora Arena, Paolo Arena, Luigi Fortuna, JET-EFDA Contributors
Fusion Science and Technology | Volume 58 | Number 2 | October 2010 | Pages 685-694
Selected Paper from the Sixth Fusion Data Validation Workshop 2010 (Part 1) | doi.org/10.13182/FST10-A10893
Articles are hosted by Taylor and Francis Online.
In practically all fields of science, measurements are affected by noise, which can sometimes be modeled with an appropriate probability distribution function. The results of measurements are therefore known only with uncertainties that sometimes can be significant. In many cases the noise source is independent of the system to be studied and the quantities to be measured. In this paper, a numerical approach to handle statistical uncertainties, due to an independent noise source, in a fuzzy logic system is developed. Numerical analysis and various tests with a benchmark show how statistical error bars can be interpreted as an independent "axis of complexity" with respect to the fuzzy boundaries of the membership functions. The uncertainties in the inputs can be transferred to the output and handled separately from the system intrinsic fuzzyness. The main advantages of this independent treatment of the measurement errors are shown in the case of a binary classification task: the regime confinement identification in high-temperature tokamak plasmas. Significant improvements in the correct prediction rate have been achieved with respect to the classification performed without considering the error bars in the measurements.