ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Hartmut Zohm
Fusion Science and Technology | Volume 58 | Number 2 | October 2010 | Pages 613-624
Technical Paper | doi.org/10.13182/FST10-06
Articles are hosted by Taylor and Francis Online.
A set of simple scaling relations is derived to assess the impact of plasma physics and technology assumptions on the design of a DEMO tokamak fusion reactor. At the same time, it is shown that by postulating that the plasma physics assumptions are consistent with those that can be reliably reached in present-day experiments and that the recirculating power is reasonably low, a tokamak DEMO operating with steady-state plasma operation is of large size, comparable to a reactor - suggesting that the study of pulsed options should receive more attention in the future. The scaling relations reproduce well the results from a number of previous studies, indicating that they are particularly well suited for future parametric scoping studies. From the relations derived, it also follows that the areas in which future progress will have a particularly large impact on the attractiveness of DEMO are the limit in plasma physics and in technology the magnetic field strength Bt and the wall-plug efficiency CD of the systems to drive noninductive current.