ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
T. Shimozuma, H. Takahashi, S. Kubo, Y. Yoshimura, H. Igami, Y. Takita, S. Kobayashi, S. Ito, Y. Mizuno, H. Idei, T. Notake, M. Sato, K. Ohkubo, T. Watari, T. Mutoh, R. Minami, T. Kariya, T. Imai, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 530-538
Chapter 11. Electron Cyclotron Resonance Heating | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST58-530
Articles are hosted by Taylor and Francis Online.
The electron cyclotron resonance heating (ECRH) system on the Large Helical Device (LHD) has been in stable operation for [approximately]11 yr in numerous plasma experiments. During this time, many upgrades to the system have been made, such as reinforcement of the gyrotron tubes, modification of the power supply depending on gyrotron type, and increase in the number of transmission lines and antennas. These efforts allow the stable injection of millimeter-wave power in excess of 2 MW. In parallel, various transmission components were evaluated, and antenna performance was confirmed at a high power level. The coupling efficiency of the millimeter wave from the gyrotron to the transmission line and the transmission efficiency through the waveguide were further improved in recent years. The feedback control of the wave polarization has also been tried to maximize the efficiency of wave absorption. The gyrotron oscillation frequency was reconsidered in order to extend the flexibility of the magnetic configuration in plasma experiments. The development of 77-GHz gyrotrons with the output of 1 MW per few seconds in a single tube is currently taking place in collaboration with the University of Tsukuba. Two such gyrotron tubes already have been installed and were used for plasma experiments recently. An ECRH system with a capability of the steady operation is required, because the LHD can continuously generate confinement magnetic fields using superconducting magnets. Not only the gyrotron but also the transmission system and components must withstand continuous power operation. Further acceleration of both the power reinforcement and a steady-state capability will allow the sustainment of high-performance plasmas.