ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
O. Kaneko, Y. Takeiri, K. Tsumori, M. Osakabe, K. Ikeda, K. Nagaoka, H. Nakano, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 497-503
Chapter 9. Neutral Beam Interaction | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10836
Articles are hosted by Taylor and Francis Online.
A unique and reliable method of plasma initiation has been established in the Large Helical Device (LHD) by using neutral beam (NB) injection into vacuum. Since LHD is a superconducting machine, the confining magnetic field exists unrelated to plasma. Under these circumstances it is demonstrated that the NB can initiate plasma by itself. A small fraction of injected NB is ionized by collision with the background neutral gas and is confined by the magnetic field. Although these high-energy ions are lost quickly by charge exchange, they work as the energy source for ionizing the background neutral particles and heating the produced plasma. As a result, very thin but hot "seed" plasma is generated, which ionizes puffed gas and makes dense target plasma that is sufficient for NB absorption. This process is simulated numerically and the results agree well with the experimental observations for both absolute values and temporal behavior of plasma parameters. The method does not depend on magnetic field strength strongly, and plasma can be initiated at the magnetic field strength as low as 0.4 T, although standard field strength of LHD is 2.75 T. The progress of high-beta studies in LHD owes this plasma production method much.