ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
N. Nakajima, M. Sato, Y. Nakamura, A. Fukuyama, S. Murakami, A. Wakasa, K. Y. Watanabe, S. Toda, H. Yamada
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 289-296
Chapter 6. 3-D Theory | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10815
Articles are hosted by Taylor and Francis Online.
One of the purposes of fusion simulations is to develop a code that could predict the entire temporal behavior of experimentally observed macroscopic physics quantities under continuous external control, which will be used to create the path to helical-type reactor by combining knowledge of reactor design. In this paper an integrated simulation code system for three-dimensional toroidal helical plasmas in the Large Helical Device (LHD) is reported. This code has been developed under the domestic and international research collaborations among universities and institutes. After explaining the structure of the code system, including the transport simulation code TASK3D and the magnetohydrodynamic (MHD) equilibrium and stability code MHD3D, we present typical simulation results: evolution of the rotational transform, MHD stability beta limit, and recent progress in the TASK3D code.