ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
H. Funaba, K. Y. Watanabe, S. Sakakibara, S. Murakami, I. Yamada, K. Narihara, K. Tanaka, T. Tokuzawa, M. Osakabe, Y. Narushima, M. Yokoyama, S. Ohdachi, Y. Takeiri, H. Yamada, K. Kawahata, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 141-149
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10801
Articles are hosted by Taylor and Francis Online.
The magnetic configuration of the Large Helical Device (LHD) changes with the increment in beta. To distinguish between the beta effect and the configuration effect on the gradual degradation of the global confinement property in the high-beta LHD plasmas, the local transport characteristics are studied by considering the change in the major radius of the magnetic flux surface with the beta value. A model transport coefficient that has the same nondimensional parameter dependence as the international stellarator scaling 2004 (ISS04) is introduced and used as the reference. The dependence of the local transport characteristics in high-beta plasmas on the major radial position of a geometric center of the magnetic flux surface is compared with that in low-beta plasmas. The dependence of the local transport in the peripheral region is correlated more with beta itself than the magnetic configuration effect, whereas the core transport appears to be correlated more with the configuration effect. The comparison of the experimental transport coefficients and the calculation results shows that the resistive pressure gradient-driven turbulence can be considered as one of the causes of this degradation.