ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
M. Yoshinuma, K. Ida, M. Yokoyama, M. Osakabe, K. Nagaoka, S. Morita, M. Goto, N. Tamura, C. Suzuki, S. Yoshimura, H. Funaba, Y. Takeiri, K. Ikeda, K. Tsumori, O. Kaneko, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 103-112
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10797
Articles are hosted by Taylor and Francis Online.
Spontaneous toroidal flow driven by ion temperature gradient and extreme hollow profile of carbon impurity (denoted as an "impurity hole") is observed associated with the increase of ion temperature gradient in the large helical device (LHD). Spontaneous toroidal flows driven by radial electric field and ion temperature gradient are studied. The positive radial electric field drives spontaneous flow in the counterdirection at the plasma edge and in the codirection near the magnetic axis. The component of the spontaneous toroidal flow driven by ion temperature gradient is clearly observed and expected to be one of the dominant components of toroidal flows in the high-ion temperature discharges in LHD. The transport analysis of the carbon impurity in the discharge with impurity hole reveals a low diffusion coefficient and the outward convection velocity, whereas the inward convection is predicted by the neoclassical theory at half the minor radius.