ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
R. Sakamoto, H. Yamada, M. Kobayashi, J. Miyazawa, S. Ohdachi, T. Morisaki, S. Masuzaki, M. Goto, H. Funaba, I. Yamada, K. Ida, S. Morita, B. J. Peterson, N. Ohyabu, A. Komori, O. Motojima, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 53-60
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10793
Articles are hosted by Taylor and Francis Online.
An interesting high-density operational regime with an internal diffusion barrier (IDB) has been extended to the helical divertor configuration in the Large Helical Device. The IDB is characterized by steep density gradient in core plasma and the attainable central density exceeds 1 × 1021 m-3 at the moderate magnetic field [approximately]2.5 T while keeping relatively low density mantle plasma surrounding the core. In the IDB discharge, significant central pressure rise is observed, and the maximum central pressure attains 150 kPa by optimizing magnetic configuration. Such a high central pressure causes very large Shafranov shift, more than half radius, even at high magnetic field. Core fueling is absolutely essential for the IDB formation, and the IDB is reproducibly obtained by employing intensive multiple-pellet injections. The attainable density is restricted by lack of heat deposition at core plasma due to strong attenuation of a neutral beam in the high-density plasma.