ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Z. Yao, C. Liu, P. Jung
Fusion Science and Technology | Volume 48 | Number 3 | November 2005 | Pages 1285-1291
Technical Paper | doi.org/10.13182/FST05-A1077
Articles are hosted by Taylor and Francis Online.
Permeability, diffusivity, and solubility of deuterium in the low-activation martensitic stainless steel EUROFER97 were derived from measurements of gas permeation in the transient and steady-state regimes at temperatures from 100 to 350°C and at pressures from 2 × 103 to 2 × 105 Pa. The specimens were used in four conditions to investigate the effect of irradiation-induced defects: standard annealed condition, preirradiated with protons, implanted with helium, and implanted plus annealed to produce helium bubbles. In general, displacement defects as well as implanted helium tend to decrease permeation and diffusivity. Permeation and diffusion measurements were also performed under simultaneous irradiation, showing no net effect if the slight temperature increase due to irradiation is taken into account. Diffusion measurement of implanted hydrogen gave equal or slightly lower values than gas permeation, which is in qualitative agreement with results from preirradiated specimens. Trapping parameters are derived by a detailed comparison to a saturable-trap model. Results are compared to previous studies on 7%Cr F82H and 11%Cr MANET-II steels, and effects of compositional variations are indicated.