ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
N. Takeuchi, T. Seki, K. Saito, T. Watari, R. Kumazawa, T. Mutoh, Y. Torii, G. Nomura, A. Kato, F. Shimpo, Y. Takase, H. Kasahara, T. Taniguchi, H. Wada, N. Kasuya, K. Yamagishi, C. P. Moeller, M. Saigusa, Z. Yanping
Fusion Science and Technology | Volume 48 | Number 3 | November 2005 | Pages 1267-1284
Technical Paper | doi.org/10.13182/FST05-A1076
Articles are hosted by Taylor and Francis Online.
A novel stacked combline antenna was fabricated for driving plasma current in order to control the rotational transform profile in the Large Helical Device. The antenna has ten elements facilitating excitation of fast-wave traveling in the toroidal direction.Each antenna element has an electrical length of a half-wavelength and is supported at the midpoint from the back plate by a metallic block. Such an antenna has two modes: even and odd. A mixed excitation of these modes will reduce the current drive efficiency. The electrical properties of this antenna were studied in an attempt to find ways of exciting a traveling wave of pure even mode. A matching section was used in combination and proved to be a good measure to improve the directionality over that of a bare combline antenna. It is confirmed in this paper that the fabricated real antenna has fairly good even-mode purity keeping the odd-mode intensity at a tolerable level. An antenna with insulating supports instead of the metallic supports is also examined, and it is found that even-mode purity is further improved. For practical uses, an entire system including impedance matching and power circulation is proposed, and sensitivity to a change in plasma loading is analyzed. Finally, the power-handling capability is discussed including estimations of plasma loading and driven current reaching an assertion of consistency with the experimental goal.