ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
New York takes two more steps toward nuclear
In 2025, New York Gov. Kathy Hochul was a vocal supporter of new nuclear development in the state. In October, she called on the New York Power Authority (NYPA)—the state’s public electric utility—to add 1 GW of new nuclear.
At the tail end of December, New York made more nuclear progress on three fronts. Hochul signed an agreement with Ontario Premier Doug Ford to collaborate on new nuclear development, Ontario Power Generation (OPG) signed a memorandum of understanding with the NYPA, and New York finalized its 2025 energy plan.
N. Takeuchi, T. Seki, K. Saito, T. Watari, R. Kumazawa, T. Mutoh, Y. Torii, G. Nomura, A. Kato, F. Shimpo, Y. Takase, H. Kasahara, T. Taniguchi, H. Wada, N. Kasuya, K. Yamagishi, C. P. Moeller, M. Saigusa, Z. Yanping
Fusion Science and Technology | Volume 48 | Number 3 | November 2005 | Pages 1267-1284
Technical Paper | doi.org/10.13182/FST05-A1076
Articles are hosted by Taylor and Francis Online.
A novel stacked combline antenna was fabricated for driving plasma current in order to control the rotational transform profile in the Large Helical Device. The antenna has ten elements facilitating excitation of fast-wave traveling in the toroidal direction.Each antenna element has an electrical length of a half-wavelength and is supported at the midpoint from the back plate by a metallic block. Such an antenna has two modes: even and odd. A mixed excitation of these modes will reduce the current drive efficiency. The electrical properties of this antenna were studied in an attempt to find ways of exciting a traveling wave of pure even mode. A matching section was used in combination and proved to be a good measure to improve the directionality over that of a bare combline antenna. It is confirmed in this paper that the fabricated real antenna has fairly good even-mode purity keeping the odd-mode intensity at a tolerable level. An antenna with insulating supports instead of the metallic supports is also examined, and it is found that even-mode purity is further improved. For practical uses, an entire system including impedance matching and power circulation is proposed, and sensitivity to a change in plasma loading is analyzed. Finally, the power-handling capability is discussed including estimations of plasma loading and driven current reaching an assertion of consistency with the experimental goal.