ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
L. L. Lao, H. E. St. John, Q. Peng, J. R. Ferron, E. J. Strait, T. S. Taylor, W. H. Meyer, C. Zhang, K. I. You
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 968-977
Technical Paper | DIII-D Tokamak - Achieving Reactor-Level Plasma Pressure | doi.org/10.13182/FST48-968
Articles are hosted by Taylor and Francis Online.
Physics elements and advances crucial for the development of axisymmetric magnetohydrodynamic equilibrium reconstruction to support plasma operation and data analysis in the DIII-D tokamak are reviewed. A response function formalism and a Picard linearization scheme are used to efficiently combine the equilibrium and the fitting iterations and search for the optimum solution vector. Algorithms to incorporate internal current and pressure profile measurements, topological constraints, and toroidal plasma rotation into the equilibrium reconstruction are described. Choice of basis functions and boundary conditions essential for accurate reconstruction of L- and H-mode equilibrium plasma boundary and current and pressure profiles is discussed. The computational structure used to efficiently integrate these elements into the equilibrium reconstruction code EFIT is summarized.