ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
J. R. Ferron, P. B. Snyder
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 931-944
Technical Paper | DIII-D Tokamak - Achieving Reactor-Level Plasma Pressure | doi.org/10.13182/FST05-A1049
Articles are hosted by Taylor and Francis Online.
The experimental and modeling results on H-mode edge-localized mode (ELM) instabilities from the DIII-D tokamak project are reviewed. This work has led to the conclusion that the most common type of ELM, called Type I, is triggered by a coupled peeling-ballooning instability driven by the pressure gradient and current density in the H-mode edge pedestal region. Good agreement is found between theoretically predicted stability boundaries and toroidal mode numbers for this instability and experimental observations of edge pedestal parameters and ELM amplitude and frequency as a function of discharge shape and edge-region collisionality. The range of toroidal mode numbers for which there is access to a second stability regime is shown to play an important role. This model of H-mode edge stability has been used to predict the pedestal parameters for ITER and FIRE.