ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
R. J. Jayakumar, S. L. Allen, K. H. Burrell, L. L. Lao, M. A. Makowski, C. C. Petty, D. M. Thomas
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 852-863
Technical Paper | DIII-D Tokamak | doi.org/10.13182/FST05-A1044
Articles are hosted by Taylor and Francis Online.
The measurement of the plasma current profile is crucial to many operating regimes and investigations on the DIII-D tokamak. The measurement is required to obtain accurate equilibria and to accurately calculate stability and transport characteristics of the plasma. The measurement of the profile is also required to obtain the different components of the current to guide efforts on the control of the current profile and experiments toward obtaining steady-state operating regimes. The edge current profile measurement is necessary to understand the formation of edge pedestal and edge-localized modes. The DIII-D tokamak has a three-array, 45-channel motional Stark effect (MSE) diagnostic to measure the plasma current density and radial electric field. A 32-channel lithium-beam (Li-beam) diagnostic has recently been installed on the DIII-D tokamak for the measurement of edge current density. Both diagnostics measure the current profile from the measurement of the pitch angle of the magnetic field that, in turn, is derived from the orientation angle of polarization of the appropriate neutral beam spectral line. The MSE and the Li-beam diagnostics are described, and some examples of measurements are shown.