ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Mariko Atarashi-Andoh, Yasuharu Kumakura, Hikaru Amano, Masami Fukui
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 771-774
Technical Paper | Tritium Science and Technology - Biology, Health, and Radiation | doi.org/10.13182/FST05-A1034
Articles are hosted by Taylor and Francis Online.
Potted rice plants were exposed to deuterated water vapor, as a substitute of tritium, for 4 hours at five different times during the grain-ripening period to estimate the influence of the growth stage on the formation and retention of organically bound deuterium (OBD) in rice. The plants were grown outside before and after the exposure experiments and were exposed to deuterated water vapor in a laboratory in a small chamber equipped with controllers of temperature, humidity and light intensity. Deuterium concentrations in free water and organic matter in rice leaves, stems and grains were investigated up to the harvest time. The deuterium in free water in the grains remained for a longer time after the end of exposure than in the leaves and stems. The mass of OBD in grain at harvest showed the highest value when the exposure was carried out in the early stage of the ripening period. When the exposure was carried out after 26 days from the heading, the increase of OBD in the grain was small.