ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Sylver Heinze, Thibaut Stolz, Didier Ducret, Jean-Claude Colson
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 673-679
Technical Paper | Tritium Science and Technology - Properties, Reactions, and Applications | doi.org/10.13182/FST05-A1014
Articles are hosted by Taylor and Francis Online.
Radioactive decay of tritium contained in tritiated water leads to the production of gaseous helium and, through self-radiolysis, to the formation of molecular hydrogen and oxygen. For safety management of tritiated water storage, it is essential to be able to predict pressure increase resulting from this phenomenon. The present study aims to identify the mechanisms that take place in self-radiolysis of chemically pure liquid tritiated water. The evolution of the concentration of hydrogen and oxygen in the gas phase of closed vessels containing tritiated water has been followed experimentally. Simulation of pure water radiolysis has been carried out using data from the literature. In order to fit experimental results, simulation should take into account gas phase recombination reaction between hydrogen and oxygen. A simplified system has been extracted from the complete chemical system used to simulate radiolysis. This system allows identifying the basic mechanisms that are responsible for tritiated water self-radiolysis.