ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
S. O'hira et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 621-624
Technical Paper | Tritium Science and Technology - Materials Interaction and Permeation | doi.org/10.13182/FST05-A1002
Articles are hosted by Taylor and Francis Online.
A new conceptual design of a tritium permeation test module assembly was developed, for simulation of tritium permeation in the real plasma facing components and validation of the models and codes for evaluation of the tritium permeation. The assembly was designed for tests using powerful ion sources, which has a capability to simulate condition relevant to that of the ITER divertor. The heat load test of the prototype module has been performed using an electron beam to verify thermal and mechanical behavior of the bonded structure and to assess its structural integrity under the cyclic heat loads. Then, the first tests using tritium ion beam generated by the TPE apparatus at TSTA/LANL with the prototype module was performed and procedure to measure tritium permeated was established. Considerations for tests using the target module with defects generated by neutron irradiation or accelerated ion beam irradiation will be also taken in the new module design.