ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
G. A Esteban, F. Legarda, A. Perujo
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 617-620
Technical Paper | Tritium Science and Technology - Materials Interaction and Permeation | doi.org/10.13182/FST05-A1001
Articles are hosted by Taylor and Francis Online.
A time-dependent gas-phase absorption-desorption technique has been used to evaluate the isotope effect on the diffusive transport parameters of hydrogen isotopes in polycrystalline tungsten and the reduced activation ferritic-martensitic steel OPTIFER-IVb.Experiments have been run with both protium and deuterium obtaining their respective transport parameters of diffusivity (D), Sieverts' constant (Ks), the trap site density (Nt) and the trapping activation energy (Et). Isotope effects on these transport parameters are analysed and modelled. Because the classical isotope relation for diffusivity has not been fulfilled, quantum-statistical vibration theory has been applied to model the isotopic relation. The hydrogen vibration properties description in a metallic-host lattice allows deriving more accurate tritium transport parameters. A congruent isotopic variation of diffusion parameters related to the type of crystal structure, bcc, has been confirmed.