ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
G. A Esteban, F. Legarda, A. Perujo
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 617-620
Technical Paper | Tritium Science and Technology - Materials Interaction and Permeation | doi.org/10.13182/FST05-A1001
Articles are hosted by Taylor and Francis Online.
A time-dependent gas-phase absorption-desorption technique has been used to evaluate the isotope effect on the diffusive transport parameters of hydrogen isotopes in polycrystalline tungsten and the reduced activation ferritic-martensitic steel OPTIFER-IVb.Experiments have been run with both protium and deuterium obtaining their respective transport parameters of diffusivity (D), Sieverts' constant (Ks), the trap site density (Nt) and the trapping activation energy (Et). Isotope effects on these transport parameters are analysed and modelled. Because the classical isotope relation for diffusivity has not been fulfilled, quantum-statistical vibration theory has been applied to model the isotopic relation. The hydrogen vibration properties description in a metallic-host lattice allows deriving more accurate tritium transport parameters. A congruent isotopic variation of diffusion parameters related to the type of crystal structure, bcc, has been confirmed.