ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
Fusion Science and Technology
January 2026
Latest News
From uncertainty to vitality: The future of nuclear energy in Illinois
Nuclear is enjoying a bit of a resurgence. The momentum for reliable energy to support economic development around the country—specifically data centers and AI—remains strong, and strongly in favor of nuclear. And as feature coverage on the states in the January 2026 issue of Nuclear News made abundantly clear, many states now see nuclear as necessary to support rising electricity demand while maintaining a reliable grid and reaching decarbonization goals.
J. N. Brooks et al.
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 669-677
Technical Paper | Fusion Energy - Divertor and Plasma-Facing Components | doi.org/10.13182/FST05-A763
Articles are hosted by Taylor and Francis Online.
The US Advanced Limiter-divertor Plasma-facing Systems (ALPS) program is developing the science of liquid metal surface divertors for near and long term tokamaks. These systems may help solve the demanding heat removal, particle removal, and erosion issues of fusion plasma/surface interactions. ALPS combines tokamak experiments, lab experiments, and modeling. We are designing both static and flowing liquid lithium divertors for the National Spherical Torus Experiment (NSTX) at Princeton. We are also studying tin, gallium, and tin-lithium systems. Results to date are extensive and generally encouraging, e.g., showing: 1) good tokamak performance with a liquid Li limiter, 2) high D pumping in Li and non-zero He/Li pumping, 3) well-characterized temperature-dependent liquid metal surface composition and sputter yield data, 4) predicted stable low-recycle improved-plasma NSTX-Li performance, 5) high temperature capability Sn or Ga potential with reduced ELM & disruption response concerns. In the MHD area, analysis predicts good NSTX static Li performance, with dynamic systems being evaluated.