ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
TEPCO restarts Kashiwazaki Kariwa Unit 6
Earlier today, TEPCO announced that after nearly 15 years, Unit 6 at the Kashiwazaki Kariwa nuclear power station has been restarted. Following approval from Japan’s Nuclear Regulation Authority (NRA), TEPCO withdrew the reactor’s control rods to initiate startup at 7:02 p.m. local time.
Next, the company will work with the NRA to confirm the safe operation of the plant. “We will carefully verify the integrity of each and every plant facility while suitably addressing any issues that arise and conveying information to the public during each step of the startup process,” TEPCO’s statement said.
S. Murakami, H. Yamada, M. Sasao, M. Isobe, T. Ozaki, T. Saida, P. Goncharov, J. F. Lyon, M. Osakabe, T. Seki, Y. Takeiri, Y. Oka, K. Tumori, K. Ikeda, T. Mutoh, R. Kumazawa, K. Saito, Y. Torii, T. Watari, A. Wakasa, K. Y. Watanabe, H. Funaba, M. Yokoyama, H. Maassberg, C. D. Beidler, A. Fukuyama, K. Itoh, K. Ohkubo, O. Kaneko, A. Komori, O. Motojima, LHD Experimental Group
Fusion Science and Technology | Volume 46 | Number 2 | September 2004 | Pages 241-247
Technical Papers | Stellarators | doi.org/10.13182/FST04-A561
Articles are hosted by Taylor and Francis Online.
Confinement of energetic ions from neutral beam injection heating is investigated by changing the magnetic field configuration of the Large Helical Device from a classical heliotron configuration to an optimized neoclassical transport configuration to a level typical of "advanced stellarators." The experimental results show the highest count rate of fast neutral particles not in the optimized configuration but in the inward-shifted one. The GNET simulation results show a relatively good agreement with the experimental results, and they also show a lower energy loss rate in the optimized configuration. This contradiction can be explained by the radial profile of the energetic ions. The relatively good agreement between experimental and simulation results suggest that ripple transport (neoclassical) dominates the energetic ion confinement and that the optimization process is effective in improving confinement in helical systems.