ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
J. H. Degnan, W. L. Baker, M. L. Alme, C. Boyer, J. S. Buff, J. D. Beason, C. J. Clouse, S. K. Coffey, D. Dietz, M. H. Frese, J. D. Graham, D. J. Hall, J. L. Holmes, E. A. Lopez, R. E. Peterkin, Jr., D. W. Price, N. F. Roderick, S. W. Seiler, C. R. Sovinec, P. J. Turchi
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 115-123
Experimental Device | Special Section: Pulsed High-Density Systems | doi.org/10.13182/FST95-A30368
Articles are hosted by Taylor and Francis Online.
Electromagnetic implosions of shaped cylindrical aluminum liners that remain at solid density are discussed. The approximate liner parameters have an initial radius of 3 to 4 cm, are 4 cm in height, and are ∼0.1 cm thick. The liners are driven by the Shiva Star 1300-µf capacitor bank at an 84-kV charging voltage and an ∼30-nH total initial inductance (including implosion load). The discharge current travels along the length of the liner and rises to 14 MA in ∼8 µs. The implosion time is ∼12 µs. Diagnostics include inductive current and capacitive voltage probes, magnetic probes, and radiography. Both right-circular cylinder and conical liner implosion data are displayed and discussed. Radiography indicates implosion behavior substantially consistent with two-dimensional magnetohydrodynamic calculations, which predict inner surface implosion velocities exceeding 20 km/s, and compressed density of two to three times solid density. Less growth of perturbations is evident for the conical liner (∼1% thickness tolerance) than for the right-circular cylindrical liner (∼3% thickness tolerance).