ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
S. Mori, H. Miura, S. Yamazaki, T. Suzuki, A. Shimizu, Y. Seki, T. Kunugi, S. Nishio, N. Fujisawa, A. Hishinuma, M. Kikuchi
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1744-1748
Magnetic Fusion Reactor and Systems Studies | doi.org/10.13182/FST92-A29973
Articles are hosted by Taylor and Francis Online.
This paper describes the preliminary design of the steady state tokamak reactor (SSTR) blanket cooled by a mixture of helium gas and fine solid particles. Light yet highly heat resistant material, titanium aluminide (TiAl), is used as structural material. Thickness of tritium breeding blanket using lithiated ceramics and beryllium neutron multiplier is minimized and high-temperature and non-breeding shield blanket is installed to enhance blanket energy multiplication. It is found that TiAl is advantageous in radioactive waste management because the contact dose rate of TiAl first wall attenuates rapidly. The gas-particulate mixture coolant lowers the helium pressure to 5 MPa and reduces the volumetric flow rate when compared to a pure helium-cooled blanket. The net thermal efficiency larger than 40 % can be achieved with the outlet coolant temperature of 700°C.