ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE lays out fuel cycle goals in RFI to states
The Department of Energy has issued a request for information inviting states to express interest in hosting Nuclear Lifecycle Innovation Campuses. According to the DOE, the proposed campuses could support work across the nuclear fuel life cycle, with a primary focus on fuel fabrication, enrichment, spent fuel reprocessing or recycling, separations, and radioactive waste management.
The DOE said the RFI marks the first step toward potentially establishing voluntary federal-state partnerships designed to build a coherent, end-to-end nuclear energy strategy for the country.
G. Van Oost, V. P. Bhatnagar, T. Delvigne, P. Descamps, F. Durodié, R. Koch, A. M. Messiaen, D. I. C. Pearson, P. E. Vandenplas, A. Vanderstraeten, R. Van Nieuwenhove, G. Van Wassenhove, R. R. Weynants, W. Kohlhaas, C. Stickelmann, A. Cosler, B. Giesen, B. Goerg, S. Haltrich, P. Huettemann, M. Korten
Fusion Science and Technology | Volume 12 | Number 3 | November 1987 | Pages 449-475
Technical Paper | Plasma Heating System | doi.org/10.13182/FST87-A25078
Articles are hosted by Taylor and Francis Online.
A multimegajoule ion cyclotron resonance heating (ICRH) experiment was installed on the Torus Experiment for Technology-Oriented Research (TEXTOR) tokamak. The system consists of two independent power lines each designed to generate and launch 1.5 MW of radio-frequency (rf) power into the machine during a 3-s period in the 25- to 29-MHz frequency range. Each power line consists of the following items: (a) a 1.5-MW transmitter, (b) a transmission line system, including a two-stub tuner, made of pressurized 155.6-mm (6.125-in.) and 228.6-mm (9-in.) rigid coaxial line components, and (c) an interface linking the transmission line to the antenna of the shielded stripline type placed along the tokamak's hot liner. Details of the line and antenna diagnostics and data acquisition system together with the subsequent impedance characteristic calculations are given. The rf radiation shielding for the ICRH experiment is explained. The control of the rf setup as a TEXTOR subsystem and the generator pulse control and operation modes are outlined. The antenna loading and power limitation in the presence of plasma and the conditioning procedure are discussed. Finally, the new rf system compatible with the toroidal pump limiter Advanced Limiter Test-II is presented.