ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
S. Reyes et al.
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 187-193
IFE | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-529
Articles are hosted by Taylor and Francis Online.
The Laser Inertial Fusion Energy (LIFE) power plant is being designed to deliver a transformative source of safe, secure, sustainable electricity, in a time scale that is consistent with the global energy market needs. The LIFE market entry plant will demonstrate the feasibility of a closed fusion fuel cycle, including tritium breeding, extraction, processing, re-fueling, accountability and safety, in a steady-state power-producing device. While many fusion plant designs require large quantities of tritium for startup and operations, a range of design choices made for the LIFE fuel cycle act to reduce the inprocess tritium inventory. The high fractional burn-up (~30%) in an Inertial Fusion Energy (IFE) capsule relaxes the tritium breeding requirements, while the use of only milligram quantities of fuel per shot and choice of a pure lithium heat transfer fluid substantially reduce the amount of material entrained in the facility. Additionally, the high solubility of tritium in the lithium breeder is expected to mitigate the need for development of permeation barriers in the engine systems, normally required to control routine releases within the allowable regulatory limits.The present paper offers an overview of the design of the LIFE fuel cycle, including a summary of the technology development plan consistent with the delivery schedule of the LIFE market entry plant.