ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Kanti M. Aggarwal, Francis P. Keenan
Fusion Science and Technology | Volume 63 | Number 3 | May 2013 | Pages 363-371
Technical Paper | Selected papers from IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, September 4-7, 2012, Daejeon, Republic of Korea | doi.org/10.13182/FST13-A16443
Articles are hosted by Taylor and Francis Online.
For the reliable analysis and modeling of astrophysical, laser-produced, and fusion plasmas, atomic data are required for a number of parameters, including energy levels, radiative rates, and electron impact excitation rates. Such data are desired for a range of elements (H to W) and their many ions. However, measurements of atomic data, mainly for radiative and excitation rates, are not feasible for many species, and therefore, calculations are needed. For some ions (such as of C, Fe, and Kr), there is a variety of calculations available in the literature, but often, they differ significantly from one another. Therefore, there is a great demand from the user community to have data "assessed" for accuracy so that they can be confidently applied to the modeling of plasmas. In this paper we highlight the difficulties in assessing atomic data and offer some solutions for improving the accuracy of calculated results.