ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NextEra and Google ink a deal to restart Duane Arnold
A day anticipated by many across the nuclear community has finally arrived: NextEra Energy has officially announced its plans to restart Iowa’s only nuclear power plant, the Duane Arnold Energy Center.
Geert Verdoolaege, Giorgos Karagounis, Andrea Murari, Jesús Vega, Guido Van Oost, JET-EFDA Contributors
Fusion Science and Technology | Volume 62 | Number 2 | October 2012 | Pages 356-365
Selected Paper from the Seventh Fusion Data Validation Workshop 2012 (Part 1) | doi.org/10.13182/FST12-A14627
Articles are hosted by Taylor and Francis Online.
Pattern recognition is becoming an increasingly important tool for making inferences from the massive amounts of data produced in fusion experiments. In this work, we present an integrated framework for (real-time) pattern recognition for fusion data. The main starting point is the inherent probabilistic nature of measurements of plasma quantities. Since pattern recognition is essentially based on geometric concepts such as the notion of distance, this necessitates a geometric formalism for probability distributions. To this end, we apply information geometry for calculating geodesic distances on probabilistic manifolds. This provides a natural and theoretically motivated similarity measure between data points for use in pattern recognition techniques. We apply this formalism to classification for the automated identification of plasma confinement regimes in an international database and the prediction of plasma disruptions at JET. We show the distinct advantage in terms of classification performance that is obtained by considering the measurement uncertainty and its geometry. We hence advocate the essential role played by measurement uncertainty for data interpretation in fusion experiments. Finally, we discuss future applications such as the establishment of scaling laws.