ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Lázaro Emílio Makili, Jesús A. Vega Sánchez, Sebastián Dormido-Canto
Fusion Science and Technology | Volume 62 | Number 2 | October 2012 | Pages 347-355
Selected Paper from the Seventh Fusion Data Validation Workshop 2012 (Part 1) | doi.org/10.13182/FST12-A14626
Articles are hosted by Taylor and Francis Online.
This paper addresses the problem of finding a minimal and good enough training data set for classification purposes by using active learning and conformal predictors. Active learning means to have control in the selection process of training samples instead of choosing them in a random way. To this end, active learning methodologies look for establishing selection criteria in order to find out the samples that show better discrimination capabilities. In the present case, conformal predictors have been used for these purposes. Results will be presented in a five-class classification problem with images. The features are the vertical detail coefficients of the Haar wavelet transform at level four to diminish the sample dimensionality by reducing the spatial redundancy of the images. The active selection of training sets (through the reliability measures of a conformal predictor) allows the improvement of the classifiers. Here, the word "improvement" refers to obtaining higher generalization properties thereby avoiding overfitting. Support vector machines classifiers, in the one-versus-the-rest approach, have been used as the underlying classifiers.