ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Deep Isolation launches borehole disposal demonstration program
Nuclear waste technology company Deep Isolation Nuclear has launched a multiyear demonstration program of its deep borehole technology for disposing of nuclear waste. The full-scale, at-depth deep borehole demonstration program is being done in collaboration with Halliburton, Amentum, NAC International, and Occlusion Nuclear Solutions, along with the Deep Borehole Demonstration Center (DBDC).
M. Inutake, A. Ando, K. Hattori, H. Tobari, T. Makita, H. Isobe (20R01)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 141-146
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1335
Articles are hosted by Taylor and Francis Online.
Dynamics of a fast-flowing plasma through a magnetic mirror field was investigated. A highly-ionized, high-density, He plasma produced by a quasi-steady MPD arcjet (MPDA) was injected into a magnetic mirror. In a uniform magnetic field region, ion acoustic Mach number (Mi) was almost unity, while in a diverging field region the Mach number increased up to 2-3. When the supersonic plasma flows into a converging field region, a shock-like structure was formed. The subsonic flow downstream of the shock was re-accelerated up to Mi of 2-3. The sonic condition (Mi=1) is satisfied at the magnetic mirror throat as in a conventional Laval nozzle. The adiabatic exponent of ions was evaluated by comparing measured spatial profiles with the prediction from 1D isentropic model.