Penn State wants a Westinghouse eVinci microreactor on campus

May 19, 2022, 3:00PMNuclear News
Representatives from Westinghouse and Penn State met at Westinghouse headquarters to sign a memorandum of understanding and enter a partnership focused on researching and developing microreactors. From left: Jason Beebe, director of the global transformation office at Westinghouse; Michael Valore, senior director of advance reactor commercialization, Westinghouse; Mike Shaqqo, senior vice president of advanced reactors, Westinghouse; Lora Weiss, senior vice president for research at Penn State; Jean Paul Allain, head of the Ken and Mary Alice Lindquist Department of Nuclear Engineering at Penn State; Geanie Umberger, associate vice president for research and director of industry research collaborations at Penn State; Saya Lee, assistant professor of nuclear engineering; Elia Merzari (back), associate professor of nuclear engineering; and Hilary Ruby, director of transformation for the Americas Operating Plant Services Business Unit at Westinghouse. (Photo: Westinghouse)

Penn State University has announced plans to explore siting a Westinghouse Electric Company eVinci microreactor on its State College campus in central Pennsylvania. Under a memorandum of understanding to perform research and development work that could advance the future commercial deployment of eVinci, a team of researchers in Penn State’s Ken and Mary Alice Lindquist Department of Nuclear Engineering also plans to explore how eVinci could displace some fossil-fueled energy sources on campus.

Universities study liquid-fueled nuclear thermal propulsion concept for NASA

March 11, 2022, 12:00PMNuclear News
Ben Campbell, a graduate research assistant and master’s degree student in aerospace systems engineering, works on the Bubbling Liquid Experiment Navigating Driven Extreme Rotation, or BLENDER, device at UAH’s Johnson Research Center. (Photo: UAH/Michael Mercier)

With three commercial teams under contract to produce reactor designs for nuclear thermal propulsion rockets that would use solid high-assay low-enriched uranium fuel to heat hydrogen propellant, NASA’s investment in nuclear thermal propulsion (NTP) has increased in recent years. But just as there is more than one way to fuel a terrestrial reactor, other fuels are under consideration for future NTP rocket engines.