GRETA will use multiple germanium crystals to track gamma rays emitted from nuclear decays. Pictured here are 24 of the 120 crystals in 6 modules. (Credit: Robinson Kuntz/Berkeley Lab)
Researchers announced earlier this month that they have completed major construction of the Gamma-Ray Energy Tracking Array (GRETA), a precision tool for gamma ray spectroscopy that, according to Paul Fallon, a researcher at University of California–Berkeley and GRETA’s project director, will be 10 to 100 times more sensitive than previous nuclear science experiments. Fallon was quoted in an August 8 article published by Lawrence Berkeley National Laboratory (Berkeley Lab)—where GRETA’s project leaders are based and GRETA was assembled.
An aerial view of the Facility for Rare Isotope Beams on the Michigan State University campus in East Lansing, Mich. (Photo: FRIB)
Michigan State University’s Facility for Rare Isotope Beams (FRIB) officially opened yesterday with a ribbon-cutting ceremony attended by Energy Secretary Jennifer Granholm, elected officials, and guests who had supported the project during its planning and construction, including ANS Executive Director/Chief Executive Officer Craig Piercy. They were there to celebrate the completion—on time and within budget—of the world’s most powerful heavy-ion accelerator and the first accelerator-based Department of Energy Office of Science user facility located on a university campus.