Piercy applauds opening of MSU Facility for Rare Isotope Beams

May 10, 2022, 6:59AMANS News

Piercy at the ribbon-cutting ceremony.

When Michigan State University’s Facility for Rare Isotope Beams (FRIB) officially opened with a ribbon-cutting event on May 2, ANS Executive Director/Chief Executive Officer Craig Piercy was there to celebrate the result of many years of hard work.

“Big congratulations to MSU for bringing this project to fruition on time and on budget,” Piercy said. “FRIB will allow scientists to probe the origins of stars and the fundamental structure of matter and explore new life-saving medical treatments.”

Piercy worked closely with MSU’s FRIB team for several years before and after the university was selected over Argonne National Laboratory to host the facility, and he has seen the project come full circle. He was present at both the groundbreaking in 2014 and the ribbon-cutting ceremony in May.

MSU’s FRIB: Ready to accelerate discoveries in nuclear physics and applications

May 3, 2022, 7:16AMNuclear News
An aerial view of the Facility for Rare Isotope Beams on the Michigan State University campus in East Lansing, Mich. (Photo: FRIB)

Michigan State University’s Facility for Rare Isotope Beams (FRIB) officially opened yesterday with a ribbon-cutting ceremony attended by Energy Secretary Jennifer Granholm, elected officials, and guests who had supported the project during its planning and construction, including ANS Executive Director/Chief Executive Officer Craig Piercy. They were there to celebrate the completion—on time and within budget—of the world’s most powerful heavy-ion accelerator and the first accelerator-based Department of Energy Office of Science user facility located on a university campus.

Researchers develop novel approach to modeling as-yet-unconfirmed rare nuclear process

July 8, 2020, 4:49PMAround the Web

According to a recent story published by AAAS, researchers from the Facility for Rare Isotope Beams Laboratory at Michigan State University have taken a major step toward a theoretical first-principles description of neutrinoless double-beta decay.