Tokamak Energy bets its spherical design will deliver fusion energy in the early 2030s

October 27, 2022, 9:30AMNuclear News

Tokamak Energy’s ST40, which achieved plasma temperatures of 100 million °C earlier this year. (Photo: Tokamak Energy)

Tokamak Energy on October 26 announced plans to construct a high field spherical tokamak using high-temperature superconducting (HTS) magnets. Dubbed the ST80-HTS, the machine would demonstrate multiple technologies required to achieve commercial fusion energy, the company says. Tokamak Energy plans to complete the ST80-HTS in 2026 to demonstrate spherical tokamak operations and inform the design of its successor, a fusion pilot plant called ST-E1 that the company says could deliver electricity into the grid in the early 2030s and produce up to 200 MWe.

Temperature milestone: Earlier this year, the company’s ST40 spherical tokamak reached the commercial fusion energy plasma temperature threshold of 100 million °C with what was reported as the highest triple product (an industry measure of plasma density, temperature, and confinement) of any private fusion energy company. The ST40 achieved those results with a plasma volume of less than one cubic meter, which is 15 times less volume than any other tokamak that has achieved the same threshold.

U.K. picks a coal power station for its fusion pilot, but still needs a design

October 11, 2022, 3:00PMNuclear News
The Spherical Tokamak for Energy Production, shown here in an artist's rendition, is a government-backed prototype fusion energy plant planned for operation in the U.K. in the early 2040s. (Image: UKAEA)

The U.K. Atomic Energy Authority (UKAEA) and Tokamak Energy announced on October 10 that they signed a framework agreement to collaborate on developing spherical tokamaks for power production. This news is a complement to last week’s announcement from the U.K. government that the West Burton A coal-fired power plant site in Nottinghamshire has been selected as the future home of STEP (Spherical Tokamak for Energy Production), the U.K.’s planned prototype fusion energy plant. The government is providing £220 million (about $250 million) of funding for the first phase of STEP, which will see the UKAEA produce a concept design by 2024.