AI-based model makes predicting fusion profiles faster

June 28, 2021, 7:00AMNuclear News

PPPL physicist Dan Boyer. (Photo: Amber Boyer/Kiran Sudarsanan)

Researchers at the Department of Energy’s Princeton Plasma Physics Laboratory are using machine learning to predict electron density and pressure profile shapes on the National Spherical Torus Experiment-Upgrade (NSTX-U), the flagship fusion facility at PPPL that is currently under repair.

The hope is that such predictions, generated by artificial neural networks, could improve the ability of NSTX-U researchers to optimize the components of experiments that heat and shape the fusion plasma.

“This is a step toward what we should do to optimize the actuators,” said PPPL physicist Dan Boyer, author of the paper, “Prediction of electron density and pressure profile shapes on NSTX-U using neural networks,” published by Nuclear Fusion, a journal of the International Atomic Energy Agency. “Machine learning can turn historical data into a simple model that we can evaluate quickly enough to make decisions in the control room or even in real time during an experiment.”

To continue reading, log in or create a free account!

Related Articles

2023 in Review: October–December

January 16, 2024, 3:01PMNuclear News

Another calendar year has passed. Before heading too far into 2024, let’s look back at what happened in 2023 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear...

2023 in Review: April–June

January 11, 2024, 7:00AMNuclear News

Another calendar year has passed. Before heading too far into 2024, let’s look back at what happened in 2023 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear...