(A) Computational domain and material distribution used in the simulations. The domain is rotated so that the Opalinus Clay strata are vertical. (B) 3D contour plots of neutral uncharged tritiated water (left) and charged 36Cl− (right) solutes at 900 days. (C) Comparison of observed (symbols) and simulated (lines) borehole concentrations using the 3D model. (Image: Sarsenbayev et al.)
Researchers with the Massachusetts Institute of Technology, working with scientists from Lawrence Berkeley National Laboratory and the University of Orléans, have modeled radionuclide behavior in deep geologic formations, offering a tool for developing a defensible safety case for the underground disposal of radioactive waste.
The DIII-D Superfacility team. (Photo: General Atomics)
Researchers at the DIII-D National Fusion Facility, the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory (LBNL), and the Energy Sciences Network (ESnet) are teaming up to make the high-performance computing (HPC) powers of NERSC available to DIII-D researchers through ESnet—a high-speed data network. Their collaboration, described in a May 29 news release, in effect boosts the computing power behind DIII-D’s diagnostic tools to make more data from fusion experiments available to researchers at DIII-D in San Diego and to the global fusion research community.
The Continuous Electron Beam Accelerator Facility at Jefferson Lab. (Source: Jefferson Lab)
Research with the Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) has revealed new insights into short-range correlations—the brief pairings of nucleons (protons with neutrons, protons with protons, or neutrons with neutrons) in the nuclei of atoms. The study, published in Nature, used precision measurements to determine that short-range correlations differ depending on the density of the nucleus, that is, how many nucleons it contains.