Feature ArticleUnderstanding the ITER Project in the context of global Progress on FusionNuclear NewsResearch & ApplicationsJanuary 15, 2021, 2:24PM|Bernard Bigot(photo: ITER Project gangway assembly)The promise of hydrogen fusion as a safe, environmentally friendly, and virtually unlimited source of energy has motivated scientists and engineers for decades. For the general public, the pace of fusion research and development may at times appear to be slow. But for those on the inside, who understand both the technological challenges involved and the transformative impact that fusion can bring to human society in terms of the security of the long-term world energy supply, the extended investment is well worth it.Failure is not an option.To continue reading, log in or create a free account!Tags:bernard bigotcommonwealth fusionfusionfusion for energygeneral fusionhl-2miterjt-60kstarmagnetic confinementmagnetstokamaktokamak energyShare:LinkedInTwitterFacebook
A new goal for fusion: 50 MWe for the U.S. grid by 2035–2040Coordinated federal and private industry investments made now could yield an operational fusion pilot plant in the 2035–2040 time frame, according to Bringing Fusion to the U.S. Grid, a consensus study report released February 17 by the National Academies of Sciences, Engineering, and Medicine (NASEM).Developed at the request of the Department of Energy, the report builds on the work of the 2019 Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research, and it identifies key goals, innovations, and investments needed to develop a U.S. fusion pilot plant that can serve as a model for producing electricity at the lowest possible capital cost.“The U.S. fusion community has been a pioneer of fusion research since its inception and now has the opportunity to bring fusion to the marketplace,” said Richard Hawryluk, associate director for fusion at the Princeton Plasma Physics Laboratory and chair of the NASEM Committee on the Key Goals and Innovations Needed for a U.S. Fusion Pilot Plant, which produced the report.Go to Article
A growing part of the fusion communityFusion energy is no longer a far-off goal. It is now routinely achieved at laboratory scale but requires more energy to control the fusion reaction than the fusion reaction has released.The path to viable fusion power from a magnetically confined plasma source requires the creation of a burning plasma, whereby the primary heating source comes from the fusion reaction itself.To begin to consider the economic viability of a fusion power plant, the reaction must have a significant energy gain, or “Q” factor (the ratio of output power to input heating power), in a reaction that is sustained over a time frame of minutes or hours.Construction has begun on an international experiment—the ITER tokamak—that aims to achieve a sustained reaction, and numerous privately funded smaller experiments have the potential to move forward toward this goal.Nuclear News reached out to companies in the fusion community to ask for insights into their ongoing work. All are members of the Fusion Industry Association. Most companies submitted briefs at a specified word count, while others ran long and some ran short. Their insights appear on the following pages.Go to Article
Notes on fusionThe ST25-HTS tokamak.Governments around the world have been interested in fusion for more than 70 years. Fusion research was largely secret until 1968, when the Soviets unveiled exciting results from their tokamak (a magnetic confinement fusion device with a particular configuration that produces a toroidal plasma). The Soviets realized that tokamaks were not useful as weapons but could produce plasma in the million-degree temperature range to demonstrate Soviet scientific and technical prowess to the world.Following this breakthrough, government laboratories around the world continued to pursue various methods of confining hot plasma to understand plasma physics under extreme conditions, getting closer and closer to the conditions necessary for fusion energy production. Tokamaks have been by far the most successful configuration. In the 1990s, the Tokamak Fusion Test Reactor at the Princeton Plasma Physics Laboratory produced 10 MW of fusion power using deuterium-tritium fusion. A few years later, the Joint European Torus (JET) in the United Kingdom increased that to 16 MW, getting close to breakeven using 24 MW of power to heat the plasma.Go to Article
Big fusion moment coming soon, Popular Mechanics saysRendering of SPARC, a compact, high-field, DT burning tokamak, currently under design by a team from MIT and CFS. Source: CFS/MIT-PSFC - CAD Rendering by T. HendersonThe fusion community is reaching a "Kitty Hawk moment" as early as 2025, according to the Popular Mechanics story, "Jeff Bezos Is Backing an Ancient Kind of Nuclear Fusion."That moment will come from magnetized target fusion (MTF), the January 25 story notes, a technology that dates back to the 1970s when the U.S. Naval Research Laboratory first proposed it. Now, however, MTF’s proponents say that the technology is bearing down to reach the commercial power market. The question is, Will it be viable before the competing fusion model of tokamaks, such as ITER, start operations?Go to Article
General Fusion boasts backing from Shopify, Amazon foundersShopify founder Tobias Lütke is backing General Fusion with an undisclosed capital investment through his Thistledown Capital investment firm, the Canadian fusion technology firm announced January 14.In an article published the same day by TechCrunch, Jonathan Shieber noted that a separate investments by Jeff Bezos, founder and chief executive of Amazon, first made through his venture capital fund nearly a decade ago, means General Fusion “has the founders of the two biggest e-commerce companies in the Western world on its cap table.”Go to Article
U.K., Japan to research remote D&D, fusion systemsThe LongOps project will develop innovative robotic technologies. Photo: UKAEABritain and Japan have signed a research and technology deployment collaboration to help automate nuclear decommissioning and aspects of fusion energy production. According to the U.K. government, which announced the deal on January 20, the £12 million (about $16.5 million) U.K.–Japanese robotics project, called LongOps, will support the delivery of faster and safer decommissioning at the Fukushima Daiichi reactors in Japan and at Sellafield in the United Kingdom, using long-reach robotic arms.The four-year collaboration on new robotics and automation techniques will also be applied to fusion energy research in the two countries.Funded equally by U.K. Research and Innovation, the U.K.’s Nuclear Decommissioning Authority, and Japan’s Tokyo Electric Power Company, the LongOps project will be led by the U.K. Atomic Energy Authority’s (UKAEA) Remote Applications in Challenging Environments (RACE) facility.Go to Article
Fusion and the bounty of electricityFrom the time we discovered how the sun produces energy, we have been captivated by the prospect of powering our society using the same principles of nuclear fusion. Fusion energy promises the bounty of electricity we need to live our lives without the pollution inherent in fossil fuels, such as oil, gas, and coal. In addition, fusion energy is free from the stigma that has long plagued nuclear power about the storage and handling of long-lived radioactive waste products, a stigma from which fission power is only just starting to recover in green energy circles. Go to Article
The year in review 2020: Research and ApplicationsHere is a look back at the top stories of 2020 from our Research and Applications section in Newswire and Nuclear News magazine. Remember to check back to Newswire soon for more top stories from 2020.Research and Applications sectionARDP picks divergent technologies in Natrium, Xe-100: Is nuclear’s future taking shape? The Department of Energy has put two reactor designs—TerraPower’s Natrium and X-energy’s Xe-100—on a fast track to commercialization, each with an initial $80 million in 50-50 cost-shared funds awarded through the Advanced Reactor Demonstration Program. Read more.Go to Article
Powering the future: Fusion advisory committee sets prioritiesThe Fusion Energy Science Advisory Committee (FESAC), which is responsible for advising the Department of Energy’s Office of Science, on December 4 published the first public draft of Powering the Future: Fusion and Plasmas, a 10-year vision for fusion energy and plasma science. FESAC was charged with developing a long-range plan in November 2018.The scope: The report, which is meant to catch the eye of leaders in the DOE, Congress, and the White House, details the needs of the fusion and plasma program identified by a FESAC subcommittee—the DOE Fusion Energy Sciences Advisory Committee for Long Range Planning—with the help of the fusion research community. The yearlong Phase 1 of the Community Planning Process, organized under the auspices of the American Physical Society’s Division of Plasma Physics, gathered input and yielded a strategic plan that is reflected in the FESAC’s draft report.Go to Article
U.K. seeks site for STEP fusion reactorThe United Kingdom’s Department for Business, Energy and Industrial Strategy has asked local governments to submit bids to host the Spherical Tokamak for Energy Production project, or STEP, according to an article published by Bloomberg on December 1. The STEP plant will be developed by the U.K. Atomic Energy Authority, which says that construction could begin as soon as 2032, with operations by 2040, and “will prove that fusion is not a far-off dream.”Go to Article