DOE to provide $12 million for nuclear data researchNuclear NewsResearch & ApplicationsDecember 8, 2020, 3:03PM|Nuclear News StaffThe U.S. Department of Energy plans to provide up to $12 million for new research on nuclear data in support of crosscutting research. The aim of the program is to expand and improve the quality of data needed for a wide range of nuclear-related activities, from basic research in nuclear science to isotope production and nuclear nonproliferation efforts.“Increasingly, precise data on the properties of atomic nuclei are central to enabling groundbreaking advances in medicine, commerce, and national security,” said Chris Fall, director of the DOE’s Office of Science, on December 7. “This program targets crosscutting opportunities to enhance the curation of existing nuclear data archives, as well as research to lay the groundwork for new applications in areas of national need.”The topics: Three DOE programs have teamed up for the effort as part of continued coordination by the Nuclear Data Interagency Working Group. They include the Office of Nuclear Physics and the DOE Isotope Program, within the DOE’s Office of Science, and the Office of Defense Nuclear Nonproliferation, within the DOE’s National Nuclear Security Administration.Topics to be considered include artificial intelligence and machine learning approaches to improve the nuclear data curation; high-impact experiments with potential crosscutting applications to basic nuclear science, nuclear energy, and nuclear nonproliferation; production of radioactive and stable isotopes that are in short supply; and advancing capabilities for identifying nuclear contraband via the detection of gamma rays.The details: Universities, national laboratories, nonprofits, and private sector companies are eligible to apply. Funding is to be awarded competitively based on peer review and is expected to be in the form of grants of up to $1 million per year, beginning in the current fiscal year. Total planned funding for this funding opportunity announcement (FOA) will be up to $12 million, starting in fiscal year 2021, contingent on congressional appropriations.Additional information on the FOA, titled “Nuclear Data Interagency Working Group Research Program,” can be found on the Office of Nuclear Physics funding opportunities page.Tags:doefunding opportunity announcementnnsaoffice of scienceresearchShare:LinkedInTwitterFacebook
Researchers report fastest purification of astatine-211 needed for targeted cancer therapyAstatine-211 recovery from bismuth metal using a chromatography system. Unlike bismuth, astatine-211 forms chemical bonds with ketones.In a recent study, Texas A&M University researchers have described a new process to purify astatine-211, a promising radioactive isotope for targeted cancer treatment. Unlike other elaborate purification methods, their technique can extract astatine-211 from bismuth in minutes rather than hours, which can greatly reduce the time between production and delivery to the patient.“Astatine-211 is currently under evaluation as a cancer therapeutic in clinical trials. But the problem is that the supply chain for this element is very limited because only a few places worldwide can make it,” said Jonathan Burns, research scientist in the Texas A&M Engineering Experiment Station’s Nuclear Engineering and Science Center. “Texas A&M University is one of a handful of places in the world that can make astatine-211, and we have delineated a rapid astatine-211 separation process that increases the usable quantity of this isotope for research and therapeutic purposes.”The researchers added that this separation method will bring Texas A&M one step closer to being able to provide astatine-211 for distribution through the Department of Energy’s Isotope Program’s National Isotope Development Center as part of the University Isotope Network.Details on the chemical reaction to purify astatine-211 are in the journal Separation and Purification Technology.Go to Article
Demolition of former radioisotope lab underway at ORNLA view of the demolition of a hot cell inside a protective cover at the former radioisotope development lab at ORNL. Photo: DOEThe Department of Energy’s Oak Ridge Office of Environmental Management and contractor UCOR have begun removing the two remaining structures at the former radioisotope development laboratory at Oak Ridge National Laboratory, in Tennessee.“This project launches our next phase of major demolition and cleanup at ORNL,” said Nathan Felosi, ORNL’s portfolio federal project director for OREM. “Our work is eliminating contaminated structures, like this one, that are on DOE’s list of high-risk facilities and clearing space for future research missions.”The project is scheduled to be completed this spring, OREM reported on February 23.Go to Article
DOE steps up plutonium production for future space explorationThis high-resolution still image is from a video taken by several cameras as NASA’s Perseverance rover touched down on Mars on February 18. Credits: NASA/JPL-CaltechNASA’s Perseverance rover, which successfully landed on Mars on February 18, is powered in part by the first plutonium produced at Department of Energy laboratories in more than 30 years. The radioactive decay of Pu-238 provides heat to radioisotope thermoelectric generators (RTGs) like the one onboard Perseverance and would also be used by the Dynamic Radioisotope Power System, currently under development, which is expected to provide three times the power of RTGs.Idaho National Laboratory is scaling up the production of Pu-238 to help meet NASA’s production goal of 1.5 kg per year by 2026, the DOE announced on February 17.Go to Article
NASA’s radioisotope-powered science will persevere on MarsMembers of the Perseverance rover team in Mission Control at NASA’s Jet Propulsion Laboratory react after receiving confirmation of a successful landing. Photo: NASA/Bill IngallsNASA mission control and space science fans around the world celebrated the safe landing of the Mars 2020 Perseverance rover on February 18 after a journey of 203 days and 293 million miles. Landing on Mars is difficult—only about 50 percent of all previous Mars landing attempts have succeeded—and a successful landing for Perseverance, the fifth rover that NASA has sent to Mars, was not assured. Confirmation of the successful touchdown was announced at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., at 3:55 p.m. EST.“This landing is one of those pivotal moments for NASA, the United States, and space exploration globally—when we know we are on the cusp of discovery and sharpening our pencils, so to speak, to rewrite the textbooks,” said acting NASA administrator Steve Jurczyk. “The Mars 2020 Perseverance mission embodies our nation’s spirit of persevering even in the most challenging of situations, inspiring, and advancing science and exploration. The mission itself personifies the human ideal of persevering toward the future and will help us prepare for human exploration of the Red Planet.”Only radioisotope thermoelectric generators (RTG) can provide the long-lasting, compact power source that Perseverance needs to carry out its long-term exploratory mission. Perseverance carries an RTG powered by the radioactive decay of plutonium-238 that was supplied by the Department of Energy. ANS president Mary Lou Dunzik-Gougar and CEO and executive director Craig Piercy congratulated NASA after the successful landing, acknowledging the critical contributions of the DOE’s Idaho National Laboratory, Oak Ridge National Laboratory, and Los Alamos National Laboratory.Go to Article
INL seeks efficiency boost for radioisotope-powered spacecraftThe RTG used to power the Mars Perseverance rover is shown here being placed in a thermal vacuum chamber for testing in a simulated near-space environment. Source: INLThe Department of Energy’s Idaho National Laboratory is celebrating the scheduled landing of the Perseverance rover on the surface of Mars in just two days’ time with a live Q&A today, February 16, from 3 p.m. to 4:30 p.m. EST).INL and Battelle Energy Alliance, its management and operating contractor, are already looking ahead to the next generation of plutonium-powered spacecraft: the Dynamic Radioisotope Power System (Dynamic RPS). INL announced on February 15 that it is partnering with NASA and the DOE to seek industry engagement to further the design of this new power system.Go to Article
DOE extends comment period on VTR environmental reviewThe Department of Energy has extended the public review and comment period for the Draft Versatile Test Reactor Environmental Impact Statement (DOE/EIS-0542) through March 2, 2021.The DOE issued the draft EIS for the Versatile Test Reactor (VTR) for comment on December 21, 2020. The draft document identifies Idaho National Laboratory as the DOE’s preferred location for the VTR, a proposed sodium-cooled fast-neutron-spectrum test reactor that, according to the DOE, will enhance and accelerate research, development, and demonstration of innovative nuclear energy technologies.In August 2020, Battelle Energy Alliance, which operates INL for the DOE, began contract negotiations with a Bechtel National–led team that includes TerraPower and GE Hitachi Nuclear Energy to support the design and construction of the VTR.Go to Article
NNSA extends comment period on scope of “dilute and dispose” EISThe Department of Energy’s National Nuclear Security Administration has extended to February 18 the public comment period for the scoping of its planned environmental impact statement (EIS) for the Surplus Plutonium Disposition Program, which would dilute and dispose of 34 metric tons of surplus military grade plutonium.The NNSA on December 16 announced its intent to prepare the EIS, which will examine the agency’s preferred alternative, “dilute and dispose,” also known as “plutonium downblending,” and other alternatives for disposing of the material. The NNSA has been pursuing the dilute-and-dispose approach to managing the surplus plutonium following the cancellation of the MOX Fuel Fabrication Facility at the DOE’s Savannah River Site.Go to Article
Savannah River crews remove cesium columns from tank closure unitWork crews remove the first column filled with cesium from the Tank Closure Cesium Removal unit by crane in H tank farm at the Savannah River Site. Photo: DOEColumns filled with cesium have been removed at the Savannah River Site in a demonstration project designed to accelerate removal of radioactive salt waste from underground tanks.“On the surface, it appeared to be like any other crane lift and equipment transport, which are routinely performed in the tank farms. However, this equipment contained cesium-rich, high-level waste, which was transported aboveground via roadway to an on-site interim safe storage pad,” said Savannah River Remediation (SRR) president and project manager Phil Breidenbach. “It was all handled safely and executed with outstanding teamwork by our highly skilled workforce.”Operated by liquid waste contractor SRR, a system known as the Tank Closure Cesium Removal (TCCR) unit removes cesium from the salt waste in Tank 10 in the site's H Tank Farm. The TCCR is a pilot demonstration that helps accelerate tank closure at the site, according to a report by the Department of Energy on February 9.Go to Article
DOE gets go-ahead to build spent fuel/high-level waste railcarsGraphical rendering of Fortis railcar design with spent nuclear fuel cask. Image: DOEThe Association of American Railroads (AAR) recently gave the Department of Energy approval to begin building and testing Fortis, a high-tech railcar designed specifically to transport the nation’s spent nuclear fuel and high-level radioactive waste. Fortis is one of two specialized railcars under development by the DOE that could be operational within the next five years.Fortis is an eight-axle, flat-deck railcar that will be able to transport large containers of spent fuel and HLW. It is equipped with high-tech sensors and monitoring systems that report 11 different performance features back to the operators in real time. The railcar design was completed earlier this year, with technical support from Pacific Northwest National Laboratory.According to the DOE, AAR signed off on the design in January, allowing the department to begin fabricating and testing the prototype in compliance with the rail industry’s highest design standard for railcars transporting spent fuel and HLW.Go to Article
ANS weighs in on NNSA’s Pu disposition planThe American Nuclear Society is urging the National Nuclear Security Administration to rethink its “dilute-and-dispose” plan for managing surplus weapons-grade plutonium. In comments submitted to the NNSA, ANS notes that a better solution for the agency’s inventory of surplus plutonium is to convert it to nuclear fuel for advanced reactors, as was originally intended.The comments are in response to a December 16 Federal Register notice by the NNSA that it intends to prepare an environmental impact statement on the scope of its Surplus Plutonium Disposition Program. According to the notice, the NNSA intends to dispose of the entire 34 metric tons of surplus plutonium using its dilute-and-dispose approach, whereby the material will be downblended and shipped as transuranic waste to the Department of Energy’s Waste Isolation Pilot Plant (WIPP) in New Mexico.Under the Plutonium Management and Disposition Agreement, signed by the United States and Russia in 2000, the 34 tons of plutonium was to be converted to mixed-oxide nuclear fuel using the MOX Fuel Fabrication Facility at the Savannah River Site, in South Carolina. However, the Obama administration, citing rising costs, halted construction on the facility in 2016, and the project was eventually canceled in 2019.Go to Article