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Multiphysics in Nuclear Engineering
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Modeling & Simulation: “Virtual Experiments”
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Enables studies that would otherwise be

impractical due to:
Cost/timeframe
Personnel/environmental risk
Limits of instrumentation technology

Advanced reactors have scarce
experimental data

Complementary to experiments



Monte Carlo
radiation transport

High-Fidelity Multiphysics

RANS-based
CFD

LES

Increased
Costs
Buispopy
paseasou|

Computational
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® Limited physics/numeric approximations
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May reduce conservatism
Provide additional context to experiments
Benchmark and inform coarse-mesh methods



History and Challenges
Cardinal: High-Fidelity Multiphysics
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An Abridged U.S. History

Scale of National Laboratory

supercomputer (petaflops) Exascale, Nuclear reactors exhibit many challenges to
transition to GPUs

104 computational modeling.
® Extreme range of scales in length and time
1034 ® Tightly-coupled physics (higher-temperature, smaller sizes,
load following, longer core life, ...)
g ® (Sometimes) difficult to construct “unit cells”
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High-Fidelity History

N

Pressurized Water Reactor (48)
Boiling Water Reactor (8)
Pebble Bed Reactor (6)

Molten Salt Reactor (5)

Liquid Metal Reactor (5)

Heat Pipe Reactor (4)

Test Reactor (4)

Toy Problem (4)

Nuclear Thermal Propulsion (3)
Prismatic Gas Reactor (2)
Supercritical Water Reactor (2)
Accelerator-Driven System (1)
Critical Experiment (1)

VVER (1)

Dual-Fluid Reactor (1)
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R&D Challenges




R&D Challenges

Data Transfers

combinatorial
Monte Carlo
geometry

Mesh-based
T/H geometry

Highly manual process to build
geometries and exchange data
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Limitations on distance-to-collision
sampling

continuo
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Challenges “general purpose” use




R&D Challenges

lterative Methods

combine \stochastic,and \matrix—based, methods

Y
Monte Carlo Ax=0b

__ Inflexible algorithms excluded
multiscale methods
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[ Challenges effective reactor simulation




R&D Challenges

Software and Parallelization
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Prior work largely limited to CPUs

Near-total lack of open-source high-
fidelity multiphysics software

Challenges large-scale simulation



Cardinal: High-Fidelity Multiphysics



e UNIVERSITY OF — XA,
Argonne° wbldaho I ILLINOIS -4 PennState |uxawomic

National Laboratory URBANA-CHAMPAIGN Energy

ardinal

e MOOSE (framework)
e OpenMC (Monte Carlo)
® NekRS (CFD)

Open source is fueling the
future of nuclear physics




Cardinal
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[1] D. Dai et al., “CFD Benchmark of Pressure Drop in
a 61-pin Wire-Wrapped Assembly with Blocked
Channels using NekRS” ANL/NSE-23/6



Cardinal

material
science

tensor uncertainty
mechanics quantification

surrogate
models

nuclear +35
scie|nce modules
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Mixed CPU-GPU codes I - b l Pluggable into entire MOOSE ecosystem
L M OPS E J Sca | a b | e In-memory coupling / F eXI e Geometry-agnostic mesh transfers /
Cardinal

OpenMC NekRS

H H Complex CAD geometry | - I Nested geometry heterogeneity
Engineering Gt /| Multiscale 5o,




material
science
tensor uncertainty
mechanics quantification
surrogate nu.clear +35
models sme|nce modules
_MOOSE | Open Source
T

|[Cgrdinal github.com/neams-th-coe/cardinal

OpenMC NekRS



https://github.com/neams-th-coe/cardinal

Applications
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High Temperature
Gas Reactors

~

Pebble Bed
Reactors

Molten Salt
Reactors

Sodium Fast
Reactors

Lead Fast
Reactors

3D/1D Multiscale
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Pressurized
Thermal Shock )
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Fluid-Structure

Interaction
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Machine Learning
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High Temperature
Gas Reactors
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multiscale, combining 1-D and 3-D methods

Molten Salt ] advanced adaptive geometry

Reactors J
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High Temperature Gas Reactors (HTGRS)

Particle fuel requires special considerations to:

High Temperature
Gas Reactors

/

Generate multigroup cross sections, X
Apply temperature feedback

Fuel compact

Coolant holes

Fuel assembly
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HTGRs

. , ¥ ~MOOSE Fluid
OpenMC MOOSE Solid —— B33~ Temperature (tubes)

Fission Power Temperature







@ @ @ Fuel heat conduction

methods

@ © @ 3-D fuel heat

conduction

TRISO homogenization &
power resolution
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Applications

16 pump/heat :
exchanger loops

Outlet P
Molten Salt InletV,T

Reactors

ray tracing within
TRI surface meshes

/

® Flow recirculation, stagnation, and compressibility influence reactor physics

OpenMC

Monte Carlo neutron transport

® \Vessel shape is difficult to construct with conventional Monte Carlo geometry



Ad a ptive Geo m etry In collaboration V\éith UKAEA; originally developed in Aurora>

Each region has constant
temperature and density

surfaces bounding each cell

Cell 0 Cell 1 Cell 2 Cell 3
elementswithTy < T < Ty elementswithTy < T < T, elements with T, < T < Ty elements withT3 < T < T,


https://github.com/aurora-multiphysics/aurora

Molten Salt Fast Reactor
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OpenMC power |:> NekRS temperature OpenMC cell temperatures

power adaptive
geometry
® Unsteady turbulence coupled to neutron transport
® Dynamic on-the-fly geometry re-generation
e Straightforward refinement studies enhance robustness of multiphysics



Conclusions

e Multiphysics simulation can accelerate nuclear technology development

e Cardinal is designed to address challenges in high-fidelity multiphysics simulation:

(@)

(@)
(@)
(@)

Improved robustness and flexibility to reduce barrier-to-entry
Streamlined integration of multiscale techniques

Mixing CPU-GPU codes

Open source

e Many needs remain:

(@)

Experimental validation data!



Thank you!

[Website: cardinal.cels.anl.gov ] ‘ d ’ I
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