

ANS Student Webinar Series:

Senior Design Pitch Competition

Sponsored by the Education, Training, & Workforce Development Division and the Young Member Group

SSC Commendation Award Nominees:

Hannah Brock - Georgia Tech Samuel Joseph Cope - NC State Zachary Deziel - University of Chicago Tristen Ence - BYU Alex Fanning - UIUC Joshua Ferringo - UT-Austin Monica Gehrig - Missouri S&T Peter Hotvedt - UW-Madison Deena Jaber - Texas A&M Dimitris Killinger - VCU Kyra Lawson - Texas A&M Cameron Maras - NC State Ihsan Yuksel - Texas A&M

Graduate Student Winners:

Ishita Trivedi

Seth Kilby

Undergrad Winners:

Alexandria Ragsdale

Mackenzie Warwick

ANS Webinars

Vincent Novellino

The Salty Spittoon

North Carolina State University Presented by Vincent Novellino Authors:

Charles Goodman

Lindsay Verrico

Thomas Thompson

Design of a Fast MSR - Presentation by: Vincent N. Novellino Motivation: Our design:

- Goal:
 - Small and Economical
 - Low-power (1 MW) demonstration reactor
- 7 ft inner diameter, 7.07 ft outer diameter HT-9 Vessel
- ~2 inch thick SS-304 reflector in 4 pieces
- 5 inch diameter pipes
- 19.5 atom-% HALEU fuel
- 33%-67% UCI3-NaCI fuel salt

Auxiliary Systems:

- Drain Tanks with Freeze
 Plug
 - Passive Safety
 System
- Fission Gas Removal System
- Salt Chemistry Control

Economics:

- Total Cost - \$380,205,156
- Budget:
 - \$500,000,000
- Lifetime:
 - 10 years
- Funding
 - Government Allocations

Tommy Wong

Millennial

Presented by Tommy Wong Authors: Chun Yin (Tommy) Wong, Aunic W. B. Goodin Faculty Advisors: Kevin G. Field, Gary S. Was

Aunic Goodin

Feasibility of SiC Cladding for Small Modular Reactors

Team *Millennial*: **Chun Yin (Tommy) Wong**, Aunic W. B. Goodin Faculty Advisors: Kevin G. Field, Gary S. Was

SiC has a lower H₂ release rate than Zircaloys

engineering NERS

Modeling Methods [2]

- Thermal
- Constant LHGR at 8.2 and 21.3 kW/m

Radiological

- Irradiation-induced swelling @ 6.1 dpa
- Linear fission gas release

MechanicalPlane strain condition

Army Nuclear Power for Land Operations

United States Military Academy West Point

Presented By Ricardo Damiani

Authors: Kenneth Allen, Ricardo Damiani, Demar Gale, Justin Knoll, Ryan Rocca

UNITED STATES MILITARY ACADEMY WEST POINT.

Feasibility and Safety of Mobile Nuclear Power

- Casualty and cost reduction
- Constraints and mobility
- Battle damage mitigation
- Final reactor area
- Human safety and environmental considerations
- Emergency procedures and recommendations

@www.ans.org
@ANS_org
americannuclear

High-Enrichment/High-Burnup Loading Pattern Optimization for a 2-Loop Westinghouse

PWR

Dr. Maria Avramova Dr. Kostadin Ivanov

NUCLEAR ENGINEERING

Department of

Amadu Toronka, Chris Gozum, Spencer McNeil

Mr. Baxter Durham Mr. Blaine Taylor

High-Enrichment/High-Burnup Loading Pattern Optimization for a 2-Loop Westinghouse PWR

Primary Core Considerations		
	Constraints	Most Limiting - Actual
Energy (Boron) @ 690EFPD	<u>></u> 10 ppm	16.4 ppm
ARO F 4 H Peaking Factor	<u>≤</u> 1.550	1.535
RIL F A H Peaking Factor	<u><</u> 1.660	1.539
Peak Pin Burnup	≤ 70,000 MWD/MTU	69893 MWD/MTU
MTC (all Power Levels)	<u><</u> 0.00 pcm/°F	-2.065 pcm/°F
Shutdown Margin	≥1700 pcm	1981.7 pcm
Feed Assemblies	< 60	56

Safety						
Considerations - Rod						
Ejection		BOL Limits v	s. Actual	EOL Limits vs. Actual		
HZP Conditions	Max Ejected Rod Worth (Δρ)	0.200	0.027	N/A	N/A	
	Max Fq	2.800	2.738	N/A	N/A	
	Max Burnup @ Hotspot (MWD/MTU)	31034	25478	N/A	N/A	
HFP Conditions	Max Ejected Rod Worth (Δρ)	0.200	0.181	0.100	0.006	
	Max Fq	2.800	1.914	3.800	1.924	
	Max Burnup @ Hotspot (MWD/MTU)	31034	24470	48276	33260	

Fuel Cycle Cost									
Component	Requirement	Pr	ice/KgUe		Value	Fraction	Plot Name	Pric	e/MWHre
Yellowcake Requirement (Lb)	751,640.1	\$	791.78	\$	18,640,675	24.72%	Ore	\$	1.178
Conversion Requirements (KgUn)	289,066.9	\$	116.52	\$	2,743,245	3.64%	Conversion	\$	0.173
Separative Work (Kg-SWU)	230,851.9	\$	1,131.76	\$	26,644,928	35.34%	Enrichment	\$	1.683
Fabrication + BA (KgUe)	23,542.8	\$	276.46	\$	6,508,600	8.63%	Fabrication	\$	0.411
Pre-Operation Carrying Charges		\$	83.95	\$	1,976,403	2.62%	PreOp Interest	\$	0.125
Operating Carrying Charges		\$	282.69	\$	6,655,264	8.83%	Operating CC	\$	0.420
Spent Fuel Disposal		\$	519.30	\$	12,225,855	16.22%	SF Disposal	\$	0.772
Total Fuel Cost		\$	3,202.46	\$	75,394,969	100.00%		\$	4.763

- Using higher enriched fuel with higher burnup limits we:
 - Successfully met extended cycle length (24 months)
 - Sufficiently met all required safety criteria
 - And is economically viable

After (Final Iteration)

The Hot Rods

North Carolina State University

Presented by Patrick Hartwell

Authors: Nicholas Meehan, Jonathan Crozier, Patrick Hartwell, and Amelia Manhardt

NC STATE UNIVERSITY Core Optimization Comparison between FORMOSA's Native Solver and PRISM

Nick Meehan, Patrick Hartwell, Jonathan Crozier, Amelia Manhardt

Manually Optimized Core

Optimization Approach: Simulated Annealing

Core Performance Criteria and Results

TABLE I. Constraint Parameters

Parameter	Limit	Ideal	Actual
Radial Peaking (Fdh)	1.596	1.520	1.55
Power Peaking (Fq)	2.410	2.295	1.98
Enrichment	6.95†	<4.95	6.2
Fresh Assemblies	78*	< 72	77
Rod Exposure (GWd/MTU)	72	62	68.1
End Of Cycle (EOC) Boron	-24 ppm	n/a	1.1
Boron Concentration	1600 ppm	n/a	1476

[†] Accounting for a .05% manufacturer error * can use up to 79 but only every other cycle

TABLE II. Cost Analysis

	2018 – 2019 Design	n	2019 – 2020 Design		
Cost Type	Amount	Cost	Amount	Cost	
Fuel Fabrication	35,040 kgU	\$10,510,000	34,980 kgU	\$10,500,000	
U_3O_8	1,183,735 lbs	\$59,190,000	1,122,165 lbs	\$56,110,000	
Conversion	1,183,735 lbs	\$5,330,000	1,122,165 lbs	\$5,050,000	
SWU	368,871 kg-SWU	\$29,510,000	345,553 kg-SWU	\$27,660,000	
	Total:	\$104,540,000	Total:	\$99,320,000	

Formosa & PRISM Coupling

Project OLS

United States Military Academy West Point Presented by Sally Varner Authors: Kamryn Brinson, Gregory Smith, Sally Varner, Chad Schools

Organic Liquid Scintillator for a Deployable Neutron Multiplicity Counter

Kamryn Brinson*, Gregory Smith*, Sally Varner*, Chad Schools[†]

*Cadet, United States Military Academy, Department of Physics and Nuclear Engineering, West Point, NY 10996 † Director, Nuclear Science and Engineering Research Center, Defense Threat Reduction Agency, West Point, NY 10996

F

Concept drawing of a

flexible multiplicity counter.

Purpose

Characterize the use of an organic liquid scintillator (OLS) for a field deployable multiplicity counter that would allow first responders to rapidly determine if an unknown neutron source contained special nuclear material (SNM)

Objective

Determine if an elastically scattered neutron will be incorrectly detected twice altering the neutron count per time window required for multiplicity counting.

Accomplishments

- Design, build, and perform experiment using ²⁵²Cf
- Model experimental set-up in MCNP

Single OLS Tube

An increase of neutrons detected in the center OLS would suggest neutrons elastically scattered in the adjacent tubes are being detected in the center OLS. This could adversely affect an OLS system's multiplicity counting performance.

Energy spectra from center OLS tube suggests double counting scattered neutron is not an issue.

Neutron Flux on Center OLS Tube

MCNP model shows higher flux on low energy neutron that may result in scattered neutrons being double counted.

<u>Results</u>

- Experimental data suggests scattering is not an issue
- Improved counting statistics needed
- Lowering trigger threshold may capture scattered neutrons
- MCNP suggests there are some additional low energy neutrons incident on the center tube
- Scattered low energy neutrons may not produce enough scintillation light to be detected

Future Work

• Continue to improve and stabilize optical coupling between the OLS tubes and PMT face

- Optimize design to an 8-tube holder
- Improve MCNP model to track energy deposited in OLS

SolidWorks Design for the tube holder

Department of Physics and Nuclear Engineering, West Point

DTRA Nuclear Science & Engineering Research Center

Group 7

North Carolina State University

Presented by Jennifer Jeffcoat

Authors: By: Benjamin Austin, W. Cade Brinkley, Jennifer Jeffcoat, Jacob Weinberg, Dr. Benjamin Beeler Sponsors: Savannah River Site, Dr. Tracey Stover & Ms. Tara Smith

An Analysis on Mark-18A Target Irradiation History and Inventory of Plutonium and Heavy Curium

By: Benjamin Austin, W. Cade Brinkley, Jennifer Jeffcoat, Jacob Weinberg, Dr. Benjamin Beeler Sponsors: Savannah River Site , Dr. Tracey Stover & Ms. Tara Smith

Problem Statement: The Savannah River Site houses the world's largest supply of heavy curium and Pu-244 in 65 targets from their Cf-252 production campaign. The amount of heavy curium and plutonium in the targets is unknown, so a computational analysis was performed to aid in isotope inventory and analysis of these targets.

Figure 1

Figure 2

University of Michigan Senior Measurements Team

Presented by John-Tyler J. lacovetta

Authors: Ricardo Lopez, John-Tyler J. Iacovetta, Aaron T. MacDonald, Thomas A. Plummer, Michael Y. Hua, Sara A. Pozzi

ONE Energy

Ontario Tech University Presented by Jordan Crowell Supervisor: Eleodor Nichita, Faculty of Energy Systems and Nuclear Science

Micro-Reactor for the Canadian Arctic

Jordan Crowell, Supervisor: Eleodor Nichita, Faculty of Energy Systems and Nuclear Science

SERPENT 3D Model Scaled Physical Model

Two-Group 3D Diffusion Approximation

Burnup (MWd/kg)

Cost of ZAN4(e): < \$128 millionCost of Electricity: $\sim $0.20/kWh$

Core Parameters

Reactor	Core (Pb-208)	Stirling Engine (Helium)		
D _{core} /H _{core}	2 <i>m</i> /1.7 <i>m</i>	D _{piston} / H _{piston}	35 cm	
T _{inlet}	400°C	P _{max}	10 MPa	
T _{exit}	900°C	$n_{eng.}$	13	
<i>Pitch</i> (cm)	35 cm	W _{cycle}	$4 MW_e$	
MW _{th}	$10 MW_{th}$	T_{H}	900°C	
\dot{m}_{avg}	25.25 kg/s	T _c	75°C	
Power Density	11.4 W/kgU	η_{eff}	41%	
q'_{max}	450 W/cm	V _{tot}	$0.76 m^3$	

Team RADBOT

United State Military Academy West Point

Presented by Brendan Huhlein

Authors: Brendan Huhlein, Kaelynn Mayes, Keith McManus, William Vanderlip

WEST POINT.

RADBOT ANS Overview

Figure 1. CAD model of the completed RADBOT

Figure 2. Arrangement of detectors in the directionality array

- RADBOT is a robotic system designed to localize radiation sources and map an indoor environment in order to protect soldiers or clean up crews in a hazardous facility.
- An array of 5 detectors provides radiation directionality data that integrates with a LiDAR map as the robot drives through the environment.
- The array design is novel due to the interior depressed detector.
- Testing results in Figure 3 show promising signal response from the array as a source passes by

Figure 3. Detector signal response as a source moves past the array from front to rear at a constant 1m to the right

Upcoming Webinars

- April 15 Spotlight on National Labs: Idaho National Laboratory
- April 30 Spotlight on National Labs: Argonne National Laboratory

Register and learn more at ans.org/webinars.